Using Sense-labeled Discourse Connectives for Statistical Machine Translation

نویسندگان

  • Thomas Meyer
  • Andrei Popescu-Belis
چکیده

This article shows how the automatic disambiguation of discourse connectives can improve Statistical Machine Translation (SMT) from English to French. Connectives are firstly disambiguated in terms of the discourse relation they signal between segments. Several classifiers trained using syntactic and semantic features reach stateof-the-art performance, with F1 scores of 0.6 to 0.8 over thirteen ambiguous English connectives. Labeled connectives are then used into SMT systems either by modifying their phrase table, or by training them on labeled corpora. The best modified SMT systems improve the translation of connectives without degrading BLEU scores. A threshold-based SMT system using only high-confidence labels improves BLEU scores by 0.2–0.4 points.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Machine Translation of Labeled Discourse Connectives

This paper shows how the disambiguation of discourse connectives can improve their automatic translation, while preserving the overall performance of statistical MT as measured by BLEU. State-of-the-art automatic classifiers for rhetorical relations are used prior to MT to label discourse connectives that signal those relations. These labels are used for MT in two ways: (1) by augmenting factor...

متن کامل

Discourse-level features for statistical machine translation

The talk will show how the disambiguation of discourse connectives can improve their automatic translation. Connectives are a class of frequent functional lexical items that play an important role in text readability and coherence. Longer-range context is taken into account to learn the signaled rhetorical relations. The labels obtained from a discourse connective classifier are then integrated...

متن کامل

Disambiguating Temporal–Contrastive Discourse Connectives for Machine Translation

Temporal–contrastive discourse connectives (although, while, since, etc.) signal various types of relations between clauses such as temporal, contrast, concession and cause. They are often ambiguous and therefore difficult to translate from one language to another. We discuss several new and translation-oriented experiments for the disambiguation of a specific subset of discourse connectives in...

متن کامل

Disambiguating temporal-contrastive connectives for machine translation

Temporal–contrastive discourse connectives (although, while, since, etc.) signal various types of relations between clauses such as temporal, contrast, concession and cause. They are often ambiguous and therefore difficult to translate from one language to another. We discuss several new and translation-oriented experiments for the disambiguation of a specific subset of discourse connectives in...

متن کامل

Discourse-level Annotation over Europarl for Machine Translation: Connectives and Pronouns

This paper describes methods and results for the annotation of two discourse-level phenomena, connectives and pronouns, over a multilingual parallel corpus. Excerpts from Europarl in English and French have been annotated with disambiguation information for connectives and pronouns, for about 3600 tokens. This data is then used in several ways: for cross-linguistic studies, for training automat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012