Using Sense-labeled Discourse Connectives for Statistical Machine Translation
نویسندگان
چکیده
This article shows how the automatic disambiguation of discourse connectives can improve Statistical Machine Translation (SMT) from English to French. Connectives are firstly disambiguated in terms of the discourse relation they signal between segments. Several classifiers trained using syntactic and semantic features reach stateof-the-art performance, with F1 scores of 0.6 to 0.8 over thirteen ambiguous English connectives. Labeled connectives are then used into SMT systems either by modifying their phrase table, or by training them on labeled corpora. The best modified SMT systems improve the translation of connectives without degrading BLEU scores. A threshold-based SMT system using only high-confidence labels improves BLEU scores by 0.2–0.4 points.
منابع مشابه
Machine Translation of Labeled Discourse Connectives
This paper shows how the disambiguation of discourse connectives can improve their automatic translation, while preserving the overall performance of statistical MT as measured by BLEU. State-of-the-art automatic classifiers for rhetorical relations are used prior to MT to label discourse connectives that signal those relations. These labels are used for MT in two ways: (1) by augmenting factor...
متن کاملDiscourse-level features for statistical machine translation
The talk will show how the disambiguation of discourse connectives can improve their automatic translation. Connectives are a class of frequent functional lexical items that play an important role in text readability and coherence. Longer-range context is taken into account to learn the signaled rhetorical relations. The labels obtained from a discourse connective classifier are then integrated...
متن کاملDisambiguating Temporal–Contrastive Discourse Connectives for Machine Translation
Temporal–contrastive discourse connectives (although, while, since, etc.) signal various types of relations between clauses such as temporal, contrast, concession and cause. They are often ambiguous and therefore difficult to translate from one language to another. We discuss several new and translation-oriented experiments for the disambiguation of a specific subset of discourse connectives in...
متن کاملDisambiguating temporal-contrastive connectives for machine translation
Temporal–contrastive discourse connectives (although, while, since, etc.) signal various types of relations between clauses such as temporal, contrast, concession and cause. They are often ambiguous and therefore difficult to translate from one language to another. We discuss several new and translation-oriented experiments for the disambiguation of a specific subset of discourse connectives in...
متن کاملDiscourse-level Annotation over Europarl for Machine Translation: Connectives and Pronouns
This paper describes methods and results for the annotation of two discourse-level phenomena, connectives and pronouns, over a multilingual parallel corpus. Excerpts from Europarl in English and French have been annotated with disambiguation information for connectives and pronouns, for about 3600 tokens. This data is then used in several ways: for cross-linguistic studies, for training automat...
متن کامل